
YOUNG
rAdio amatEUr
M O N T H L Y O N S C I E N C E A N D
T E C H N O L O G Y

VOLUME 3, JANUARY 1973, PRICE 4 KČS

NUMBER 27

IN THIS ISSUE
WE WILL COVER THE THEME:

HOW TO CONSTRUCT A COMPUTER GAME?
Engineers from the creative group INTROVERT LEGION will reveal what tools and instruments are suitable for
successfully constructing a computer game. As an example, we will look at the computer game ROCKTOPIA:
INVADERS FROM THE PAST FUTURE, which the authorial collective is diligently working on.

HOW TO CONSTRUCT

A C O M P U T E R G A M E ?
Prepared by: Dipl. Ing. Judáš Novák, CSc.

Article Author Meeting Engineers from INTROVERT LEGION at Milky Bar Star

I
met with engineers

from the creative group INTROVERT
LEGION at the Milky Bar Star. We discussed how the
computer game ROCKTOPIA: INVADERS FROM THE
PAST FUTURE is created, on which the entire collective
is intensively working. We were mainly interested
in the technological aspect of the entire process -
what new, modern tools they use, how they approach
optimization, what technological challenges they
encounter, and how it is with translation into foreign
languages. You will learn everything in the interview. I
wish you pleasant reading.

Good day to you. Let’s get right to it - as they say - from
Adam. On what computers will it be possible to play
your game?
	 Good day. Not only on computers but also on other
devices. We call them platforms. We have them divided as
follows:

Primary platform: PC; Steam and Epic Store
Secondary platform: Sony Playstation 5, Nintendo Switch 2
(unconfirmed), Steam Deck
Potential platforms: Xbox Series X

The game will support control via a game controller -
gamepad. This will ensure the best gaming experience.
There are many game controllers. Our game will support
PC-compatible controllers for PS4, PS5, Xbox One, Xbox
Series S/X, and Nintendo Pro Controller. If you want to
play the game on a personal computer, it should meet the
following requirements:

Operating System: Windows 10/11, 64-bit
Processor: Intel Core i7 - 7700, AMD Ryzen 5 1400
Graphics Card: NVIDIA GeForce GTX 1060, or AMD Radeon
RX 580, or better. The graphics card memory should have a
capacity of at least 6GB VRAM
Sound: Integrated sound card
Operating Memory: 8GB
Hard Disk: 20GB - this is an estimate

Tell us, what various programs and technologies do you
use?
	 Engineers and artists from other production sections
send their partial creations to a central development
environment where everything comes together, and the
game itself is created. This environment is the globally
known program called Unreal Engine 5 (currently in
version 5.3.2.). We use this development environment in the
form that it is available - without any custom modifications.

Why specifically Unreal Engine 5?
	 There are several significant factors
that decided in favor of this development
environment. They are:
	- Rendering Quality: the development

environment offers the best tools to achieve
the quality of image, light, and shadows that
we require.

	- Ease of Use: more experienced engineers
easily navigate this environment.

	- Visual Programming System: the so-
called Blueprint visual programming allows
for easy and efficient creation of simple
operations.

	- Previous Experience: we do not hide
the fact that the core of our art section
has already used this environment in
professional deployment in the creation of
movie visual effects. They know how to
work with cameras, with light, with coloring
film, with creating complex film sequences.

For these reasons, the choice of Unreal Engine
as the development environment was clear.

What software do your artistic workers
use?
	 “The assembly” of the game takes place
in the development environment of Unreal Engine
5. Here our artistic workers create unusual
compositions from objects that were prepared
in other programs (see below). They also set
lighting and surface properties here. “They plant”
grass, trees, shrubs, mushrooms. They place
small stones, shape terrain. They create gorges,
caves, mountains, meadows valleys. They control
clouds, sun, fog. It is here that everything fits
together, and our game world “comes to life.”
However, to have something to assemble, it is
necessary to create objects. Currently, many
objects can be purchased. We create all objects
ourselves. We use the following tools:

1

Tasks:

Creation of standard three-dimensional objects
(characters, stones, trees, shrubs, grass, etc.)

Creation of mountain ranges designed for the background

Covering three-dimensional models with prepared
surfaces and working with surface layers

Creating custom surfaces

Creating surfaces from photographs

Creating components of the game’s graphic user interface
and production of some specific surfaces

Preparing materials for printing

Creating custom fonts

Creating bones, attaching characters to skeletons, and animation

Tasks:

Batch Export of Models

Layered Animation

Communication Between Control Skeleton and Shadow
Skeleton, Animation Management

Basic Object Splitting

Detailed Object Splitting

Control and Adjustment of Surface Detail

Heuristic Arrangement of Two-Dimensional Representation
of Three-Dimensional Models for Optimal Use of Space
Allocated for the Surface of a Given Object

Custom Toolkit: Setting color management, working
with vertex colors (randomization or based on UV),
automated attachment of objects to the skeleton,
automated attachment of the shadow skeleton to the
control skeleton

Tasks:

Creation of Game Environment Prototypes

Creation of Game User Interface Prototype

Organizing Implementation of Game and Support
Mechanics

Programs used by artistic workers:

Supportive Plugins Used by Artistic Workers in Blender:

Software Used by Workers in the Game Design Section:

Program:

Blender

Gaea

Adobe Substance 3D Painter

Adobe Substance 3D Designer

Materialize

Adobe Photoshop, Adobe Illustrator

Adobe InDesign (however, we also use ink pens,
lettering templates, rulers, and French curves)

Calligraphr, FontForge, Adobe Photoshop

Blender

Supportive Plugin:

Super Batch Export

Animation Layers

Frame Ranger

Noisy Cutter

RBD Lab

Texel Density Checker

UV packmaster

Dino Tools

Program:

Blender

Adobe XD, Figma, Miro

Trello

2

Tasks:

Data Storage and Synchronization Database

Project Versioning

Sharing Work Documents

Creating Work Documents

Communication Within the Creative Group

Tasks:

Detailed Control of Sky Settings: Control of clouds, sun,
day phase, intensity and temperature of lighting, as well as
exposure. The system offers significant artistic control over
the final output, providing a high degree of flexibility and
many optimization options from a performance standpoint

Tool for Creating Relatively Realistic Effects of Reactive
Flora: Visual reaction of grass, shrubs, and trees upon
physical contact with a character in the game. The potential
of this system is not yet fully utilized. Full deployment will
occur after the completion of work on the “vertical slice.”

Proven Tool for Storing Data and Changes in Game
Scenes: Used in games like Hydroneer, Forgive Me
Father, or Night of the Dead - games very well-reviewed
on the Steam platform

Software Used by All Workers:

Supportive Plugins Within the Unreal Engine 5 Development Environment

Program:

Synology Rackstation RS3614xs

Apache Subversion, Tortoise SVN

Google Drive

Google Docs

Skype

Program:

Ultra Dynamic Sky

Prismatiscape

(EMS) Easy Multi Save

Well, that was certainly an exhaustive listing of the
software equipment. Let’s get back to your game -
what is the brief process of creating what is called
Level Design - environments in your game?
	 The process is systematic. Designs of spaces
and environments gradually go through iterations from
drawn concepts to a simplified three-dimensional model.
This then moves into Unreal Engine, where it is used as
a mockup for the production of game environments:

1 - Mockup - Simplified three-dimensional model

2 - Game environment created based on the mockup

3 - Mockup along with the game environment

1

2

3

3

Indeed, your environments seem quite intricate.
Isn’t that a big strain on computer performance?
	 Good observation. If we want the game to run smoothly
even on less powerful computers, we must approach the
creation of the game environment very sensitively and
carefully. So, we are talking about optimization. In our game,
we started optimizing right from the beginning of production.
We knew that our environments would be full and detailed.
We meticulously divide the environments into blocks, which
we call “streaming volumes.” This division ensures that those
parts of the environment that the player does not see or
cannot see are not rendered. Thus, they do not unnecessarily
consume CPU performance or occupy space in computer
memory. The functionality of these blocks is fully automatic
- meaning that the game itself loads the data it needs at
any given moment, while the player notices nothing - the
gaming experience is thus smooth and uninterrupted.
	 However, this is not the only optimization tool.
We also think of players who have really less powerful
computers and would also like to play our game. Here we
reach compromise solutions - by reducing the quality of
certain parameters, we can achieve smoother gameplay.
However, this is compensated by a degraded visual
experience. These are the tools:

Flora Density: Reducing the amount of displayed grass,
shrubs, mushrooms, and small stones
Shadow Calculation Accuracy: After optimization, the
shadows that objects cast may be “jagged” or simplified
in shape
Surface Calculation Accuracy: Reflections on surfaces
may be simplified after optimization
Hiding Objects by Size and Distance: If small objects
are in the frame at a distance from the player beyond
a certain limit, they can gradually stop being rendered
(the object gradually becomes transparent)
Reducing Surface Size: Smaller surfaces occupy
less space in the computer’s memory.

We know that the game is quite a busy
affair. Constantly, various sub-programs
and processes are running in the
background. Does this also affect the
overall performance?
	 Of course. As we mentioned earlier, the
game environment is divided into blocks. Similarly,
we have divided the launching of processes.
Local Processes: Processes that occur within
active blocks (such as activating various objects)
Global Processes: Processes that occur
continuously and are independent of which block
is currently active (such as controlling lighting
and atmosphere)

Interactivity - that’s a new word in
our parts. I’ve studied it - it’s the
system’s ability to respond to user
inputs and allow them to influence
or control the course of events or
content. What will interactivity look
like in your implementation?
	 Nice definition. The trigger for
interactivity in the game environment
will mostly be our main character - the

dinosaur. When our character approaches
an object with which it can interact, the
object begins to “communicate” with the
character. Ways of such communication can
be varied. Textual, light, sound, motion, or
combinations thereof. In principle, however,
they clearly indicate to the player what needs
to be done - for example, which button on the
controller to press. These are the basic types
of interactions in our game:

Push: Moving objects to solve puzzles
and facilitate movement through the game
environment.
Grab-Carry: Carrying objects for a similar
purpose, but there is the possibility to carry an
object over obstacles.
Lever: Triggering and stopping mechanisms or
changing two different states of mechanisms.
Button: Triggering and stopping mechanisms or
changing two different states of mechanisms.
Pressure Plate: Triggering mechanisms by loading
a pressure plate. The load can be the main character
or some object.
Energy Emitter: Emits a beam in a certain direction.
In the game, it is expected that the player will direct
its path towards an “energy absorber” using an
“energy ray bender.”
Energy Ray Bender: See above, used to bend the
energy ray.
Energy Absorber: The target into which the energy ray
must be bent to trigger or stop some action.
Elemental Totem: At this totem, our character can
exchange points collected during the game for some
upgrades in three different categories.
Elemental Well: In this well, the transformation of our
character to the next developmental stage takes place.

These interactions, more precisely, these interactive
objects activate other objects that do not have their
interaction logic. For example, doors - they can only be
opened using a Button, Lever, Pressure Plate, or Energy
Emitter. The player can thus interact not only with doors
but also with various traps and mechanisms that spit lava
or ice. Through interactive elements, the player can direct
these objects or directly influence them so that they do
not play against him but with him.

In one sentence, please - what are the main
principles of the game?
	 The entire game loop revolves around finding food, and
thus survival until the end, where the game sometimes helps
the player achieve this goal, but other times it makes it more
difficult.

4

About making the game challenging - I sense some
overthought enemies here. Do these enemies
have some sort of “intelligence”? Can they react
to the main character in some way?
	 Certainly. We call it artificial intelligence.
We use artificial intelligence modules that
are integrated directly into the Unreal Engine
development environment. For those more
technically inclined, we could describe it as follows:

Artificial intelligence is based on various modules that
work together. These include:
Behavior Tree: This module takes care of the logic of
artificial intelligence.
Blackboard: This module carries variables that the
Behavior Tree module exchanges with the surrounding
world.
AI Controller: Besides basic detections, this module
also manages the sending of data to the Behavior Tree
and the Blackboard.

A layman’s explanation of artificial intelligence could be
given as follows:

The enemy sees you when you are close and within their
field of view. The enemy can also hear you when you are
further away and making noise. It is capable of pursuing
you. You can hide from it. It will search for you for a
while. If it doesn’t find you, it will lose interest. However,
if it detects you again—by sight or sound—it will start
pursuing you again. If it is threatened, it can hide.

Do all the characters that the dinosaur in your
game encounters try to attack it?
	 No, some serve as food. We have divided the
characters into three categories:

Passive Side Characters: They do not attack, can be attacked
but do not defend themselves. They serve as food.

Reactive Side Characters: They do not attack unless
the player attacks first. They may or may not flee from
the player.
Main Characters: Predators. They always attack as
soon as they notice the player.

You mentioned that the enemy can hear the
dinosaur. What kinds of sounds can it make?
	 Primarily, the sounds include footsteps,
running, and jumping on various surfaces. The sound
playback system monitors the type of surface the
player’s main character is moving on and decides
which sound to play accordingly. In the Unreal Engine
development environment, we can modulate aspects
like volume based on the speed of movement and the
distance from the player. We use footstep sounds
for all larger characters. For smaller characters that
may attack in groups, it would be disruptive to play all
sounds for all animals simultaneously. In such cases,
only the footstep sounds of characters closest to
the player will be played. More distant characters
will only produce secondary noises such as rustling
grass, bushes, or very soft sounds of running on sand.
Some characters will emit specific attack sounds,

The Behavior Tree is a hierarchical structure of commands
where each node signifies an action or decision. Instructions
include commands like wait, attack, search, hide, and others.
Within the Unreal Engine environment, we also utilize specifics
of the game space for artificial intelligence needs. For example,
the Environment Query System is used to find suitable hiding
spots.

Behavior Tree of an enemy named Titanis

5

like trumpeting or
screaming.
	 A n
important part
of the sound
landscape inclu-
des ambient
noises. These
s i g n i f i c a n t l y
contribute to the
perception of the atmosphere. In the game, players
might hear the wind in rock crevices, falling stones,
geysers, or subthreshold sounds as a harbinger
of an event. Sounds will be triggered by switches
activated either by the main character or based
on fulfilling conditions of a particular scenario.
These switches are placed in the space during its
construction.
	 A crucial component of sound is music. Only
one musical theme will play at a time, dynamically
transitioning to another based on the game situation,
such as from a calm theme to a dynamic one.

Will it be possible to pause the state of the
game and, for example, go to the Milky Bar Star
and then continue playing the next day where
we left off?
	 Yes. The Unreal Engine provides tools for saving
the state of the game. However, we have chosen to
use the “Easy Multi Save” plug-in, which enhances the
game state saving options by adding additional custom
parameters. The main advantages are:

	- Quick and efficient way to save and
read complex game data.

	- Practically unlimited number of save spots
along with previews.

	- Allows saving and loading states of various
types of information (character components,
the characters themselves, spatial blocks and
subprograms, player status, or inventory).

	- The module automatically decides which
components to update or respawn.

	- Multithreaded and deferred reading and
saving of many actors.

	- Clean file structure with support for file systems
for PCs and console platforms.

	- After updating the project, it keeps old saved
files as relevant.

	- Custom objects for saving settings or additional
data.

Telemetry - another foreign term and
another definition: the collection of
data for the purpose of monitoring,
analyzing, and managing processes.
Do you use telemetry data?
	 Telemetry is an important aspect in our
field. It allows us to identify where players
most frequently linger within the game
environment, where they stop and do not
proceed, or if they somehow exit the intended
game area. This data can significantly help in
identifying bugs and improving almost every
aspect of the game, from playability through

optimization to design.
Currently, our game
does not integrate any
telemetry tools, but we
plan to conduct several
telemetry tests in the
future using the product
from Talos Interactive
LLC, named Game
Telemetry and

Heatmap Recorder.

Last question. I assume that your
game, ROCKTOPIA: INVADERS
FROM THE PAST FUTURE, is not
meant exclusively for our player,
but that you intend to release it
globally. This means the game will
need to communicate with players
in various languages...
	 The game will include several language
versions. We plan to support: English,
French, German, Spanish, and Portuguese. If
we decide to support Asian languages, it will
include: Japanese, Simplified Chinese, and
Traditional Chinese.

Thank you for the inspiring interview
and I wish you much success in your
personal and professional future.
	 Thank you.

6

